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Abstract

Thermo-viscoelastic stresses in a sphere with a con-

centric spherical cavity are analysed, for uniform initial

temperature, and cavity ablation at an elevated constant surface

temperature. The material is considered to be thermo-rheological-

ly simple, with properties prescribed by an isothermal relaxation

modulus function and a relaxation time scale factor given as a

function of the temperature. The theory is developed in the form

of integral equations in time for the radial stress gradient.

These lend themselves to numerical solution, and an example is

presented of a sphere of polymethyl-methacrylate for which the

relaxation modulus function and temperature-log(time) shift func-

tion are available. Features of the solution are discussed, and

compared with a corresponding elastic case and the previously

published solution for an ablating solid sphere.

This work was sponsored by the Bureau of Weapons, Department
of the Navy, under Contract NOrd 18594 with Brown University.
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Introduction

This paper is concerned with thermal stresses in a
@

linear viscoelastic material in which increase in temperature

produces thermal expansion with coefficient a, and also contracts

the time scale of the relaxation modulus (ard creep compliance)

by a factor cp(T), where T is the temperature measured above a

base temperature To. The response to stress at different

temperatures of many materials can be expressed by relations of

this -type [1J*, termed thermo-rheologically simple behavior by

Schwarzl and Staverman [2], and known in the chemical literature

as the Williams-Landel-FPerry law. On the common log(time) plot,

this corresponds to change in temperature causing a shift of the

relaxation curve along the log(time) axis without change of shape.

In order to deal with varying (time-dependent) tempera-

ture, with the resulting contraction of the time scale thus

itself a function of time, it is convenient (3] to define a

reduced time ý which incorporates the varying scale factor q(T),

so that in terms of • the viscoelastic stress-strain relation at

varying temperature has the same form as the isothermal law at

the base temperature T
0

Sj(XX) = ýe i(Xc'M

0

where x denotes the triplet of rectangalar Cartesian coordinates

Numbers in square brackets refer to the bibliography at the
end of the paper.
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(x 1 ,x 2 ,x 3 ), s5j and e i are the stress and strain deviators

respectively, and G(t) is the relaxation modulus in shear at the

base temperature T . The reduced time ý(x,t), where t is the

real time, is determined in terms of the varying scale factor

q[T(x,t)] by the relation

t
t(xt) = f qpT(xt')]dtt. (2)

0

During the course of the analysis we shall find it

convenient to consider a dependent variable, for example the

stress deviator, sometimes to be a function of the reduced time

s(x,), and sometimes expressed in terms of the real time,

and we shall use the same function notation: sij(x,t). This

signifies replacing ý in sij(x,ý) by t(x,t). The functional form

is thus different, but no confusion need arise since the independ-

ent variables will either be stated or be clear from the context.
""5sI

Space derivatives, e.g. ax will always signify differentiation

at constant real time t, since they will arise only from the

equilibriun- and displacement-strain relations, which involve

space gradients at fixed real time. Since a transformation from

t to t may be involved in, for example, the interpretatlon of an

integral over reduced time of a space derivative, a distinguishing

function notation would become cumbersome in the present problem.

The integral operator form of the viscoelastic stress-

strain relation (1) is utilized because of its generality

Only the relationship (1) for shear type deformation has been

stated since we shall assume the response in dilatattoneto be
elastic.

AMWF



Ilord-18594-6 4

compared with the low-order differential operator laws commonly

considered in viscoelastic stress analysis solutions. This

generality permits accurate representation of material response

over the equivalent of a wide frequence band, and is needed in

thermal-stress problems because of the sensitivity of the scale

factor 9 to temperature change. Moreover, the integral operator

law can lead to representation of the stress distribution sought

as the solution of an integral equation with its kernel dependent

on the relaxation modulus G(t). Numerical solution by finite

sum methods may prove convenient [4], and permits direct substitu-

tion of the experimentally measured material characteristics into

the analysis.

In this paper we treat the problem of a sphere with a

concentric spherical cavity. The temperature is initially

uniform throughout, when that at the cavity surface increases

discontinuously to a value which is thereafter maintained

constant, and the cavity ablates with steadily increasing radius

until it reaches the outer radius, and the viscoelastic material

has then disappeared. Such a problem falls within the general

framework of the method devised by Muki and Sternberg (5], but

the moving boundary rules out application of the Laplace trans-

form, and integral operator expressions must be maintained to

yield integral equation formulations which can cope with the

moving boundary (4]. This aspect of the analysis was developed

in (6], but it was applied there only to the problem of a solid
sphere in which the coupling between the elemental spherical
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shells happens effectively to disappear because of symmetry

requirements at the center. In the present problem the spherical

shell solutions are linked by the stress boundary conditions at

the surfaces, and this leads to coupling in the space variables

of the integral equations, in time, and so to a much more

challenging computational task. This coupling, incidentally,

rules out the transform approach even for fixed boundaries,

since the resulting integral equation is, in general,-no longer

of convolution type, as'pointed out by Sternberg and Gurtin [7].

The spherically symmetric stress field.

A body in the form of a spherical shell is considered,

loaded uniformly over each surface and subjected to a radially

symmetrical temperature distribution T(r,t), where r is the

radius. A brief development of the theory given in [6] is

presented here to provide a framnework for discussion of the new

solution. Symmetry determines the principal stresses to be the.

radial stress d and the circumferential stress (@ repeated. Ther

sum of the principal stresses is therefore:

= +2()

The single non-trivially satisfied equilibrium equation in

r + o. (4)

Symmetry determines a single independent stress deviator ccm.o-

nent, and a corresponding strain deviator component, which for

convenience can be replaced by principal stress and strain
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differences. With u(r,t) as the radial displacement, the

equivalent of (1) then becomes

S- d(rr) J 2G(•-,) - -, (5)
0

which, using (4), can be written in the form

ro 3- r~~J g 6

Note that, as mentioned in the Introduction, the r derivatives

operate on functions of r and t, but transformation to r and

is implied for the integration. d can be eliminated from (3)

and (4) to give:

(rdr) =r 2d1 (7)

Elastic dilatational response is assumed, together with thermal

expansion with constant coefficient a, giving the relation

5 = •;r +-r - 3ae], (8)

where k is the bulk modulus and e the increase in temperature

over the unifor-m initial temperature. Integration of (7) at

constant real time and substitution for d from (8) yields

r 3dr(r,t)-[a(t)] 3dr(a(t),t] 3k(r 2u(r,t)-[a(t)] 2u[a(t),t]r
3cc S CtP ep,t)dp] •(9)

in which conditions at a boundary radius a(t) give the lower

limits of the integrals. Substitution for u(r,t) from (9) into

(6) gives:
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ad 3 d 1 + 2 dr(ait') u t_)}-i = _1ý fo K(- ' 7 • r + 2Lý r u 3k a

o r

+ 3.a p3 aO dp + a 30(a))]dý' (i0)

r. a

The E integral is a convolution integral (see, for example,

Tricomi [8]), and this provides a simplification of (10) through

the associative property of convolutions. We define the function

R(O) by the integral equation

R(ý) + 4 1 G(- R) dý' 2G(ý) (ii)
3k0

which, it will be noted, contains the same operator on R as does

(iO) on 2-- The associative property of convolutions then

enables (10) to be replaced by:

r i) 6 a3 dr(at') u(a,t'),) [- { 3k a
0 ra

r
- 0f-3  " dp + a•e(a)]]. (12)

r a

We consider an ablating hollow sphere, and take a(t) to be the

varying cavity radius. The surface boundary conditions are then:

r = a(t), dr(a(t),t] fl(t); r = b(t), dr[b(t),t] = f 2 (t) (13)

where b(t) is the radius of the external surface, and

-fl(t), -f 2 (t) are prescribed surface pressures. Since u(a,t)

is.not known a priori, the integrand in (12) contains an unknown

function of t, and it is convenient to combine this with other

functions of t only and write (12) in the form
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= ~~ R(ý - '~( (t' + p3 Zip dp jd11 (14i)
r o act

where
(t) adt)] 3  ra(t),t u[a(t)+t [a(t),t]-t) a 3k + a(t) a)at,~

(15)

Integration of (14) through the sphere at constant real time,

using the boundary conditions (13) to give:Jb(t)
T-dp f2(t - jt (6

aCt) Pr

reduces (14) to an integral equation for f(t). Because • is a

function of r and t, this spade integral destroys the simplifying

convolution property of the integral equation over reduced time,

but, as shovnm below, it can be readily solved numerically by

finite sum techniques. f(t) having been determined, (12)

rcomprises an integral for.5-- , space integration from a boundary

gives d r and d is then determined from (4).

Method of solution.

Since the functions which define the problem -- the

temperature field e(rt), the boundary radii a(t) and b(t) and

the prescribed pressures -f,(t), -f 2 (t) -- are all defined in

terms of real time t, and since the benefit to be gained by using

as independent variable has already been achieved through the

application of convolution theory leading to (12), it is

advantageous to evaluate the solution in terms of the real time t.

Equation (14) then becwes
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-- -, Rtl[(t') + Sdp]dt 0
- r o a(t')P- (

Integrating by parts to obtain a more convenient form for

numerical integration yields the expression

6a - R(O)[f(t) + d }
r a(t) p "dp

t 3- {f~(t,)+ J 3 p eSa' fft) dp) a Rft(r,t)-ý(r,t')jdt' ].

0 a(t i) Tat 1 (18)

As described in [4], a suitable finite sum approximation for the

time integral in (18) is obtained by placing ahead of the integral

sign a mean value of the first bracket of the integrand. Equation

(18) can then be written in the form

4 r R n[f(tn) + h(r,tn)]

l [f(tk) + h(rtk) + f(tk+l) + h(rtk+l)][Rk+l-Rk]

k=l (19)

where

Rk = R[Q(r,t) - ý(r,tk)] (20)

h(r,tk) = I Op3 )E(p,tk) (21)k a (3p

and, in order to remove the constant 6a, the functions have been

normalized with the new d r given by dr/6_EeI, when, E is the

instantaneous Young's modulus, and 01 the maximum temperature

difference occurring.

I,
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By integrating the finite sum equation (19) over the

radius, f(t n) is given in terms of Its value at earlier times;

hence the terms containing f(tn) are grouped together, and (19)

is written in the form R f(t_) • Rn
2tr + nf(t)(D + R) (22)r r

where

rgp = [h(r,tn 1 ) + h(r,tn) + f(tn)][Rn-Rn_l

- [2h(r, tn) + f(tn-l)R]

n-2
+ Z [h(r,tk) + h(r,tk•1 ) + f(tk) + f(tk+l)j[Rk;1-Rk]

k=l.

and

rD =R .

We consider the case with zero surface pressure so that

fl(t) - f 2 (t) 0, and constant external radius b(t) F b.

Integration of (22) over r from a(t) to b then yields

0 j Pdr + f(tn-l)G - f(tn)[ Ddr + G] (23)

a(t) a(t)

where
R

G 3 U [fa(tn)f]- 3 -b-33

Equation (23) determines f(tn) in the form
• b

n(t) Pdr + t n-1

[' Dr + Ga(t)
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with the solution i.irediate!y after application of the surface

temperature, at t=O+, defining f(o) = 1. Substitution of f(t

into (22) and integration from the fixed outside boundary r=b

determines dr according to

R b b
2dr(r,tn) 3 n [f(t) f(tn 1 )][r,3 b 3 ] _ SPdr-: f(tn) SDdr.

r r

(25)

The integrals over r were evaluated by using Simpson's ruic over

most of the range, but the trapezoidal rule for a single step

only and the Newton-Cotes three interval expression adjacent to

the boundary r=b for odd numbers of intervals greater than one.

Next to the moving boundary, r=a(t), it was necessary to use

unequal steps in r, and the finite sum integration formula was

chosen to give the area under a parabola through the last three

points. The choice of interval size for both n and t is discussed

in the next section where the solution is presented. The calcula-

tions were carried out on the IBM-7070 machine at the Brown

University Computing Labo-ratory.

The temperature variation E(rt) was obtained as the

solution of the heat conduction problem, neglecting the coupling

between heat energy and mechanical energy dissipated in visco-

elastic flow. For the thermal stress problem mentioned in the

Introduction, we need the temperature field in a sphere initially

at uniform temperature, defined as zero, and with the constant

temperature eI at the ablating surface. To limit computational

effort on this particular problem, which is evaluated simply as

• f••_ _
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an examole of a class of solutions, a temperature field given by

a relatively simple expression was achieved by considering the

cavity to be in an infinite medium and by making use of the

analogy between plane and spherically symmetric heat flow

mentioned in [9]. The resulting solution involves heat conduction

across the radius r-=b, which determines the outer boundary condi-

tion for the temperature distribution in the spherical shell.

We consider the temperature field for r > a(O) a, when the

variation

=I + P- t4 + .t + b t 2  (26)

is prescribed on the surface r-a, where p, y and b are arbitrary

constants. The locus r-a(t) determined by &=E1 can be considered

as the ablating boundary, which can be located from the known

temperature distribution corresponding to the boundary condition

(26) at r=a, and zero initial temperature (see [p])

a :aerfc x + Pt
2 ierfc x + yt(4 i 2 erfc x)

+ bt 2 (8 i 4 erfc x)] (27)

where x = (r-a)/2(Kt)i, K being the thermal diffusivity. The

second ternm with P/0 is needed to ensure finite initial velocity

for the ablating boundary, and the constants were chosen to

achieve approximately constant rate of ablation. Figure 1 shows

the resulting curve, r=a(t), for a = 2.871, P=2 and y-=2000,

comp=ed with that for constant velocity ablation. For thb
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numerical solution the positions of the ablating boundary,

r=a(tk), were determined by solving (27) for x by Newton's

method, with the left hand side replaced by unity. Equation (27)

then determines the temperature field for a(tk) <r < b, and the

resulting distributions are showm in Fig. 2 at four time values.

As seen from Fig. 1, the average velocity of ablation was

selected to complete the process, a(t)=b, at t = 0.7a1/K, for

the outside boundary chosen, b=3a. Immediately after application

of the internal heat, at t=O+, the cavity surface is at tempera-

ture 81, with the rest of the material still at the zero initial

temperature. The temperature field does not correspond to one

of the standard boundary conditions for heat conduction, but a

glance at the distributions adjacent to r=3a suggests that the

temperature gradient is roughly proportional to the temperature,

dO)
so that the solution approximates the radiation condition d

-,®. From (27) the integrals (21) for h(r,t 1) can readily be

evaluated.

As in the problem discussed in [6], the thermal stress

field was evaluated for polymethyl-methacrylate material

behavior using measured tensile relaxation data. We use the

auxiliary function R(() evaluated in [4] by numerical integration

of an integral equation equivalent to (11). The shift function

9(T) used by Muki and Sternberg (5] was used, and also the same

temperature range, eI 30'C with the initial temperature 8000C

Taking K 8 cms /hr, and a = 4 cms, the total timo of ablation

2
becomes 0.7 a /K 1.4 hrs. As discussed in [6], fozmnally the
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solution appliez for a range of a and K, wlth constant a2 /X, but

since viscoelastic characteristics for polymethyl-methacrylate

have been used, for practical interpretation the corresponding

value of K must also be substituted.

The solution

Usirg the material data and constants defining the

particular prcblem to be solved, time and space steps for the

finite sum integration procedures detailed in the previous section

were determined by trial. Increments were halved until inappre-

ciable differences in the solution resulted. The full line in

Fig. 3 shows the variation of f(t) defined in (15), with

dr(a(t),t] = 0 for the case considered of zero cavity pressure.

It will be noted that, apart from the factor -[a(t)] 3 , f(t) then

represents the excess of the circumferential strain at the

cavity surface over the thermal expansion there, and is thus the

strain caused by stress. It ,.;as computed according to (24). As

detailed in the previous section, f(t) is the function which

links the stress values at different radii, and constitutes a

major ingredient of the stress determination. It must therefore

be determined accurately, and the choice of time and space steps

was assessed by their influence on f(t). The results shcwn in

Fig. 3 were calculated for Ar/a = 0.05, and for the early stages

.At/a2 = 0.0125. The availability of memory locations lUi. ted

the time range over which this fire time mesh could be maintained,

but increaslr..& the step for i.ntermediate times caused no d-fficulty
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since terperaturo gradients, and the resulting dependent variables,

settle down to more gradual variation. When ablation is almost

complete, and only a thin shell of material remains, f(t) changes

rapidly and accuracy again demands a reduction in the time step.

With only a narrow shell left, smaller increments in the radius

would also be needed to maintain accuracy, and the completion of

.the f(t) curve up to Kt/a 2 = 0.7 was achieved by an analytical

expansion procedure. That the finite increments stated above

are small enough for satisfactory accuracy is indicated by the

comparisons of f(t) values computed for different finite differ-

ence steps presented in Table I. With a radius step of Ar/a=O.l

an undesirable roughness was apparent in the f(t) values due to

the change in the form of the space integrals in (21) and (24)

as the number of radius increments spanning the ablating shell

changed from odd to even, and as the size of the interval

adjacent to the ablating boundary changed. This roughness was

not apparent for Ar/a = .05.

The individual points plotted in Fig. 3 correspond to

the solution for an elastic body with the elastic constants for

instantaneous loading of polymethyl-methacrylate. It is obtained

by simply substituting R(R) = R(O), a constant, into the visco-

elastic analysis.

Computed values of d r and d., evaluated from (25) and

(4) are plotted in Figs. 4 to 7 for both the viscoelastic and

elastic cases. Use of the time and space steps found satisfactory

for determining f(t)lead to satisfactory accuracy over most of
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the radius range, but to serious inaccuracies adjacent to the

ablating boundary in the viscoelastic case. These occur because

the temperature rise at the ablating surface results in acceler-

ated stress relaxation due to the sensitivity of the scale

factor cp(T) to temperature. Taking the initial temperature as

the base temperature, • is 1O3.6 at the ablating surface, so

that relaxation times are all reduced by this factor with the

resulting rapid stress relaxation shown. In order to improve

accuracy in the region of the ablating boundary, integration of

(22) for dr was carried out from the inner boundary a(t) using

time steps of .00125 a 2/K1, and space steps of Ar/a = .0125.

Corresponding values of f(t) were deduced by interpolation.

Results of these calculations are shown by the circled points in

Fig. 4, and they are seen to veer smoothly. into the values

calculated for the larger mesh away from the inner boundary.

Points corresponding to the latter are indicated by crosses and

are seen to be appreciably in error near the boundary. Similar

corrections were needed at later values of the time, though

somewhat larger time steps could be tolerated, and were

necessitated by machine storage limitatlons, unless more

elaborate programming techniques were to be utilized. As men-

tioned above, smaller time and radius steps were needed to

maintain accuracy pear the end of the process when only a thin

spherical shell remained, and these could be incorporated since

only a small radius range occurred.
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Study of the results depicted in Figs. 3 to 7 reveal

interesting features of the solutions. The stress distributions

show that the influence of viscoelasticity is large but localized

in the heated region near the ablating boundary, in conformity

with the sharp influence of temperature on viscoelasticity

through the scale factor y(T). The main body of the material

thus responds-essentially elastically. The thermal expansion

near the ablating surface is resisted by the constraint of these

outer layers, and this leads to the high peak of circumferential

compression. Immediately on application of the cavity surface

temperature e,, at t=O +, the strain is completely constrained to

remain zero, and the cavity surface is subjected to a surface

compression of magnitude 0.2564, as discussed in [6] for the

solid sphere. Qualitatively, constraint of this nature remains

until ablation is almost complete as indicated by '>e variation

of f(t), which, as mentioned above, Is a function of the cir-

curruLerential expansion at the cavity surface due to stress alone.

For quantitative assessment, the factor -[a(t)] 3 must be taken

into account. The rapid decrease in f(t)'shoirn in Fig. 3 when

ablation is nearly complete represents freedom for thermal

expansion when the temperature rise spreads to the outer boundary,

and a consequent decrease in magnitude of the negative strain due

to the compressive stress. In the elastic case the strain just

prior to complete ablation is entirely due to thermal expansion,

since stresses reduce to zero with no surface pressure acting,

and hence f(tb) 0 0, where a(tb) = b. Foe; the viscoelastic case,

t
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tho outer ring has been stressed in tension throughout the

process, and so a positive residual strain due to viscoelastic

flow is superposed on the thermal strain, and f(tb) becomes

negative as shown.

An indication of the effectiveness of the constraint

of the outer part of the sphere is provided by comparison with

the elastic solution for a cavity in an infinite solid. In this

case, irrespective of the form of the spherically symmetrical

temperature distribution, Sternberg [10] has shown that the

cavity surface displacement remains zero. Because a quasi-static

elastic solution depends only on the current geometry and

tractions, it follows that u[a(t),t] = 0 for the elastic solution

corresponding to our ablation ptoblem but with the outer radius

b increased to infinity. Substituting this into the expression

for f(t) yields the broken curve sho-im in Fig. 3. It lies close

to the finite sphere solution at small times, and the latter

gradually falls below it due to the positive radial displacement

permitted by the removal of restraint forces at the outer bound-

ary. It is seen that this release is quite small until appreci-

able ablation has taken place. The reduced peak of circumferen-

tial compressive stress in the viscoelastic case reduces the

tendency for the outer shell to expand, hence reduces the

internal displacement, and so the viscoelastic curve in Fig. 3

lies between the elastic values and that for the infinite elastic

sphere.
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The stress distributions for the ablating hollow

sphere presented here contrast with the solid sphere case

described in (6]. In the present case the thermal stress field

dies out much less rapidly than for the solid sphere. For the

solid sphere the heat from the ablating outer surface heats up

the entire sphere and the temperature approaches the uniform

value E) With decreasing temperature gradients, the thermal

stresses, even in the elastic case, decrease rapidly with time.

The condition of heat transfer across the outer boundary in the

present case causes retention of high temperature gradients as

is clear from Fig. 2, and this leads to persistence of thermal

stresses in both the elastic and viscoelastic cases. Thermal

insulation of the outer boundary would reduce these.

As in [61 the dimensions of the sphere (a=4 cms,

b=12 cms) and the temperature field (total ablation time 1.4 hrs.)

were chosen to illustrate a significant influence of thermo-

viscoelasticity. A shorter ablation time would reduce the influ-

ence of viscoelasticity for the same temperature range and scale

factor y(T). The modest temperature range 80°0 to 1100 C was

chosen for comparison with previous solutions ((5] and (6]), and

the effect of temperature on viscoelasticity is so great, that

an increase in the upper temperature of the order 100°C could

increase q by several factors of 10, and yield a marked visco-

elastic effect even for ablation times of the order of seconds

in the same material. Thus quantitative estimates of dominant
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relaxation t imes and the variation of the scale factor y(T) are

needed to assess the expected influence of viscoelasticity on a

thermal stress problem.

This solution has been presented to illustrate the

efficacy of the integral equation approach to a thermo-visco-

elastic stress-analysis problem. Numerical solution can be

readily processed on an electronic digital computer, and this

enables experimentally measured viscoelastic characteristic to

be directly introduced into the analysis. This solution goes

beyond those previously published in this area, since the

analysis reduces to a integral equation spanning both the space

and time variables.

KAt/a 2  .0125 .025 .05
Ar/a __ _ _ _ _ _ _ _ _

rf(.05) 1.592 1.588

f(.l) 2.450 2.42 2.431
.05

f(.2) 4.549 4.519

f(.A) 8.350

f(.05) 1.559 1.562 1.593

f(.l) 2.415 2.412 2.411
.i0

f(.2) 4.58o 4.563 4.526

f(-- 8.369 8.321

Table I. f(t) computed using different time and space steps.

F

I
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